

Advanced Materials for Microturbines

Dave Stinton
Oak Ridge National Laboratory
and
Debbie Haught
U.S. Department of Energy

November 28-29, 2001

DER Conference and Peer Review

Materials Program Focuses on Needs Identified by Microturbine Contractors

- Si₃N₄ Ceramics
 - Environmental Stability (Honeywell, Kyocera, St. Gobain, ORNL)
 - Mechanical Properties (UDRI, ORNL)
 - Protective Coatings (ORNL)
 - Reliability and Life Prediction (NASA, ORNL)
 - NDE (ANL)
- Recuperator Materials
 - Creep-resistant Materials (600-750°C)
 (Materials Suppliers, ORNL)
 - Oxidation-resistant Materials (750-900°C)
 (Materials Suppliers, ORNL)
 - Microturbine Materials Test Facility (ORNL)
- Heat Sinks
 - High Conductivity Carbon Foam (ORNL)

Database of Materials Properties is being Developed for Designers, Materials Developers, and End Users

Methodology was Developed to Measure Properties of Complex-Shaped Ceramic Components

NDE

Microstructure Characterization

Recent Engine Testing Indicates Si₃N₄ Reacts with Turbine Environments

OAK RIDGE NATIONAL LABORATORY
U. S. DEPARTMENT OF ENERGY

OEMs were Polled to Determine Operating Conditions of Advanced Microturbines

Parameter	Strawman	Proposed
Temperature	1900 - 2300°F (1040 - 1260°C)	1800 – 2400°F
Total pressure	5 – 10 ATM	4 – 10 ATM
Water vapor	5 - 15%	3 - 20%
Gas velocity	0 - 250 fps	0 - Mach 1

Research Center

Allison

Williams

Teledyne

Experimental Design was Developed from the Scoping Study

Hot-Section Materials are Evaluated in Simulated Microturbine Environments

- Temperatures to 1500°C
- Pressures to 20 atm
- Low Gas Velocity (0.1 m/s)
- Water Vapor Pressures to 4 atm
- Up to ~60 specimens/run
- 1000's of hours of exposure

EBCs Are Being Evaluated After Exposure in Keiser Rig

UTRC's Early Attempt To Put A "Mixed Layer" EBC On AS800 Silicon Nitride

Solar 150 thermally cycled (UTRC) then exposed for up to 2000 h in Keiser Rig @ 1200°C

Environmental Test Center is Being Expanded to Include a High-Velocity Rig

Honeywell Engines and Systems

- Temperatures to 1500°C
- Pressures to 10 atm
- High Gas Velocity (900 m/s)
- Water Vapor Pressures to 4 atm
- 10-20 specimens/ run
- 100's of hours of exposure

Materials Selection is Determined by the Recuperator Hot-Gas Inlet Temperature

Excessive Creep Can Close Up The Flow Channels In Recuperator Air-Cell

No Creep

Creep

 Oxidation becomes a problem at higher temperatures (water vapor)

Alloy Development For Improved Foil Performance Must Be Targeted Directly At Creep Resistance

Recuperator Test Facility

High-Thermal Conductivity Carbon Foam

Ongoing Materials Projects Support the New Advanced Microturbine Contracts

- Collaborate with ceramic suppliers to evaluate the mechanical properties and environmental stability of silicon nitride
- Develop and evaluate corrosion-resistant coatings for silicon nitride
- Develop creep- and oxidation-resistant metals for higher temperature recuperators
- Develop a microturbine test facility to evaluate new recuperator materials

Good Communication Has Been Established With Program Participants

- Recuperator Workshop May, 2000
- Distribution of Materials Quarterly Progress Reports
- Recuperator Materials Session at IGTI June 2001
- Microturbine Materials Conference and Peer Review June 2001
- Microturbine Applications Workshop January 2002
- Advanced Recuperator Session at IGTI June 2002

